http://reference.wolfram.com/language/ref/ArcSin.html
ArcSin[z]
gives the arc sine  of the complex number .

Details

Background & Context

Examples

open all

Basic Examples  (3)

Results are in radians:
In[1]:=
Click for copyable input
Out[1]=
Plot over a subset of the reals:
In[1]:=
Click for copyable input
Out[1]=
Series expansion:
In[1]:=
Click for copyable input
Series[ArcSin[x], {x, 0, 10}]
Out[1]=

Scope  (7)

Evaluate numerically:
In[1]:=
Click for copyable input
Out[1]=
In[2]:=
Click for copyable input
Out[2]=
Evaluate for complex arguments:
In[1]:=
Click for copyable input
Out[1]=
Evaluate to high precision:
In[1]:=
Click for copyable input
Out[1]=
The precision of the output tracks the precision of the input:
In[2]:=
Click for copyable input
Out[2]=
The precision of the output can be much lower than the precision of the input:
In[3]:=
Click for copyable input
Out[3]=
Simple exact values are generated automatically:
In[1]:=
Click for copyable input
ArcSin[1/2]
Out[1]=
Parity transformation is automatically applied:
In[1]:=
Click for copyable input
{ArcSin[-x], ArcSin[I x]}
Out[1]=
ArcSin threads element-wise over lists and matrices:
In[1]:=
Click for copyable input
ArcSin[{0.2, 0.5, 0.8}]
Out[1]=
In[2]:=
Click for copyable input
ArcSin[\!\(\*
TagBox[
RowBox[{"(", "\:f3a2", GridBox[{
{"1", 
FractionBox["1", "3"]},
{"x", 
FractionBox["1", "2"]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, 
"Rows" -> {{Baseline}}, "RowsIndexed" -> {}, "Items" -> {}, 
"ItemsIndexed" -> {}},
GridBoxSpacings->{
"Columns" -> {0.28, {0.7}, 0.28}, "ColumnsIndexed" -> {}, 
"Rows" -> {0.2, {0.4}, 0.2}, "RowsIndexed" -> {}, 
"Items" -> {}, "ItemsIndexed" -> {}}], "\:f3a2", ")"}],
Function[BoxForm`e$, 
MatrixForm[BoxForm`e$]]]\) ]
Out[2]=
TraditionalForm formatting:
In[1]:=
Click for copyable input
Out[1]//TraditionalForm=

Generalizations & Extensions  (5)

ArcSin can deal with realvalued intervals from :
In[1]:=
Click for copyable input
ArcSin[Interval[{-1/3, 1/2}]]
Out[1]=
Infinite arguments give symbolic results:
In[1]:=
Click for copyable input
Out[1]=
ArcSin can be applied to power series:
In[1]:=
Click for copyable input
ArcSin[x + x^2/2 + x^3/3 + O[x]^4]
Out[1]=
Find series expansions at branch points and branch cuts:
In[1]:=
Click for copyable input
Series[ArcSin[x], {x, 1, 1}]
Out[1]=
In[2]:=
Click for copyable input
Out[2]=
ArcSin threads over explicit lists as well as over sparse arrays:
In[1]:=
Click for copyable input
SparseArray[{{1, 1} -> 1, {1, 3} -> 1/
3, {3, 3} -> -(1/2), {4, 2} -> -1}]
Out[1]=
In[2]:=
Click for copyable input
SparseArray[{{1, 1} -> 1, {1, 3} -> 1/
3, {3, 3} -> -(1/2), {4, 2} -> -1}];
ArcSin[%]
Out[2]=
In[3]:=
Click for copyable input
SparseArray[{{1, 1} -> 1, {1, 3} -> 1/
3, {3, 3} -> -(1/2), {4, 2} -> -1}];
ArcSin[%];
% // MatrixForm
Out[3]//MatrixForm=
Reviewed by . blogmathappily on 6:19 م Rating: 5
صور المظاهر بواسطة enot-poloskun. يتم التشغيل بواسطة Blogger.