العلاقة بين العدد 1 والنسب المثلثية



العلاقة بين العدد 1  والنسب المثلثية 

 

 magic hexagon

  
Clockwise
  • tan(x) = sin(x) / cos(x)
  • sin(x) = cos(x) / cot(x)
  • cos(x) = cot(x) / csc(x)
  • cot(x) = csc(x) / sec(x)
  • csc(x) = sec(x) / tan(x)
  • sec(x) = tan(x) / sin(x)
Counterclockwise
  • cos(x) = sin(x) / tan(x)
  • sin(x) = tan(x) / sec(x)
  • tan(x) = sec(x) / csc(x)
  • sec(x) = csc(x) / cot(x)
  • csc(x) = cot(x) / cos(x)
  • cot(x) = cos(x) / sin(x)

Product Identities

The hexagon also shows that a function between any two functions is equal to them multiplied together (if they are opposite each other, then the "1" is between them):
magic hexagon tan(x)cos(x) = sin(x)
Example: tan(x)cos(x) = sin(x)Example: tan(x)cot(x) = 1
Some more examples:
  • sin(x)csc(x) = 1
  • tan(x)csc(x) = sec(x)
  • sin(x)sec(x) = tan(x)

 
magic hexagon sin(x) = 1/csc(x) Here you can see that sin(x) = 1 / csc(x)
Here is the full set:
  • sin(x) = 1 / csc(x)
  • cos(x) = 1 / sec(x)
  • cot(x) = 1 / tan(x)
  • csc(x) = 1 / sin(x)
  • sec(x) = 1 / cos(x)
  • tan(x) = 1 / cot(x)

Bonus!

AND we also get these:
magic hexagon sin(x) = cos(90-x),  tan(x) = cot(90-x),  sec(x) = csc(90-x),
Examples:
  • sin(30°) = cos(60°)
  • tan(80°) = cot(10°)
  • sec(40°) = csc(50°)

Double Bonus: The Pythagorean Identities

The Unit Circle shows us that
sinx + cos2 x = 1
The magic hexagon can help us remember that, too, by going clockwise around any of these three triangles:
magic hexagon sin^2(x) + cos^2(x)=1
And we have:
  • sin2(x) + cos2(x) = 1
  • 1 + cot2(x) = csc2(x)
  • tan2(x) + 1 = sec2(x)
You can also travel counterclockwise around a triangle, for example:
  • 1 - cos2(x) = sin2(x)
العلاقة بين العدد 1 والنسب المثلثية العلاقة بين العدد 1  والنسب المثلثية  Reviewed by . blogmathappily on 2:36 م Rating: 5
صور المظاهر بواسطة enot-poloskun. يتم التشغيل بواسطة Blogger.