تطبيقات نظرية الاعداد في الرياضيات


  

Number Theory

Packing a large number of sophisticated algorithmsmany recent and originalinto a powerful collection of functions, the Wolfram Language draws on almost every major result in number theory. A key tool for two decades in the advance of the field, the Wolfram Language's symbolic architecture and web of highly efficient algorithms make it a unique platform for number theoretic experiment, discovery, and proof.

Factoring & Primes »

FactorInteger  find the factors of an integer
PrimeQ  test whether an integer is prime
Prime  ▪  NextPrime  ▪  PrimePi  ▪  EulerPhi  ▪  MoebiusMu  ▪  JacobiSymbol  ▪  ...

Congruences & Modular Arithmetic

PowerMod  modular powers and roots
ModularInverse  modular inverse

Diophantine & Other Equations »

Reduce  find general solutions to Diophantine equations
FindInstance  search for particular solutions to Diophantine equations
Element  test field, ring, etc. memberships
Integers  ▪  Rationals  ▪  Reals  ▪  Algebraics  ▪  Primes

Number Representations

IntegerDigits  ▪  RealDigits  ▪  FromDigits  ▪  DigitCount  ▪  ...

Multiplicative Number Theory »

Divisors  ▪  DivisorSigma  ▪  DivisorSum  ▪  PerfectNumber  ▪  MangoldtLambda  ▪  ...

Analytic Number Theory »

DirichletL  Dirichlet L-functions
Zeta  ▪  DirichletCharacter  ▪  LogIntegral  ▪  ZetaZero  ▪  ...
PrimePi  ▪  PrimeOmega  ▪  PrimeNu  ▪  MangoldtLambda  ▪  LiouvilleLambda  ▪  ...

Additive Number Theory »

IntegerPartitions  restricted and unrestricted partitions of integers
PartitionsP  ▪  PartitionsQ  ▪  FrobeniusNumber  ▪  SquaresR  ▪  ...
PowersRepresentations  representations of integers as sums of powers

Algebraic Number Theory »

AlgebraicNumber  ▪  Root  ▪  GaussianIntegers  ▪  MinimalPolynomial  ▪  ...
ToNumberField  operate in a given algebraic number field
تطبيقات نظرية الاعداد في الرياضيات تطبيقات نظرية الاعداد  في الرياضيات Reviewed by . blogmathappily on 3:25 م Rating: 5
صور المظاهر بواسطة enot-poloskun. يتم التشغيل بواسطة Blogger.