قوانيين النسب المثلثية

قوانيين النسب المثلثية                                قوانيين النسب المثلثية 
sin=opposite/hypotenuse cos=adjacent/hypotenuse tan=opposite/adjacent
Sine Function:
sin(θ) = Opposite / Hypotenuse
Cosine Function:
cos(θ) = Adjacent / Hypotenuse
Tangent Function:
tan(θ) = Opposite / Adjacent
For a given angle θ each ratio stays the same
no matter how big or small the triangle is

When we divide Sine by Cosine we get:
trig sin/cos = (Opposite/Hypotenuse) / (Adjacent/Hypotenuse) = (Opposite) / (Adjacent)
So we can say:
tan(θ) = sin(θ)/cos(θ)
That is our first Trigonometric Identity.

Cosecant, Secant and Cotangent

We can also divide "the other way around" (such as Adjacent/Opposite instead of Opposite/Adjacent):
triangle showing Opposite, Adjacent and Hypotenuse
Cosecant Function:
csc(θ) = Hypotenuse / Opposite
Secant Function:
sec(θ) = Hypotenuse / Adjacent
Cotangent Function:
cot(θ) = Adjacent / Opposite

Example: when Opposite = 2 and Hypotenuse = 4 then

sin(θ) = 2/4, and csc(θ) = 4/2
Because of all that we can say:
sin(θ) = 1/csc(θ)
cos(θ) = 1/sec(θ)
tan(θ) = 1/cot(θ)
And the other way around:
csc(θ) = 1/sin(θ)
sec(θ) = 1/cos(θ)
cot(θ) = 1/tan(θ)
And we also have:
cot(θ) = cos(θ)/sin(θ)

Pythagoras Theorem

For the next trigonometric identities we start with Pythagoras' Theorem:
right angled triangle abc
The Pythagorean Theorem says that, in a right triangle, the square of a plus the square of b is equal to the square of c:
a2 + b2 = c2
Dividing through by c2 gives
a2c2 = b2c2 = c2c2
This can be simplified to:
(ac)2 + (bc)2 = 1
Now, a/c is Opposite / Hypotenuse, which is sin(θ)
And b/c is Adjacent / Hypotenuse, which is cos(θ)
So (a/c)2 + (b/c)2 = 1 can also be written:
sin2 θ + cos2 θ = 1
Note:
  • sin2 θ means to find the sine of θ, then square the result, and
  • sin θ2 means to square θ, then do the sine function


Example: 32°

Using 4 decimal places only:
  • sin(32°) = 0.5299...
  • cos(32°) = 0.8480...
Now let's calculate sinθ + cos2 θ:
0.52992 + 0.84802
= 0.2808... + 0.7191...
0.9999...
We get very close to 1 using only 4 decimal places. Try it on your calculator, you might get better results!
Related identities include:
sin2 θ = 1 − cos2 θ
cos2 θ = 1 − sin2 θ
tan2 θ + 1 = sec2 θ
tan2 θ = sec2 θ − 1
cot2 θ + 1 = csc2 θ
cot2 θ = csc2 θ − 1

How Do You Remember Them?

The identities mentioned so far can be remembered
using one clever diagram called the Magic Hexagon:

magic hexagon

But Wait ... There is More!

There are many more identities ... here are some of the more useful ones:

Opposite Angle Identities

sin(−θ) = −sin(θ)
cos(−θ) = cos(θ)
tan(−θ) = −tan(θ)

Double Angle Identities

sin 2a
cos 2a
tan 2a

                       
sin(−θ) = −sin(θ)
cos(−θ) = cos(θ)
tan(−θ) = −tan(θ)

الخطيئة 2A
كوس 2A
تان 2A


الخطيئة / 2
كوس / 2
تان / 2
سرير / 2


المبلغ والفرق الهويات

قوانيين النسب المثلثية قوانيين النسب المثلثية Reviewed by . blogmathappily on 2:24 م Rating: 5
صور المظاهر بواسطة enot-poloskun. يتم التشغيل بواسطة Blogger.